Evaluation of Maltose-Based Cationic Liposomes with Different Hydrophobic Tails for Plasmid DNA Delivery.
نویسندگان
چکیده
In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a), Malt-DiC14MA (IX b) and Malt-DiC16MA (IX c) were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation, deacetylation, Staudinger reaction, tertiary amination and quaternization. Target compounds and some intermediates were characterized by ¹H-NMR, 13C-NMR, ¹H-¹H COSY and ¹H-13C HSQC. The results of gel electrophoresis assay, atomic force microscopy images (AFM) and dynamic light scattering (DLS) demonstrate that all the liposomes could efficiently bind and compact DNA (N/P ratio less than 2) into nanoparticles with proper size (88 nm-146 nm, PDI < 0.4) and zeta potential (+15 mV-+26 mV). The transfection efficiency and cellular uptake of glycolipids in HEK293 cell were evaluated through the enhanced green fluorescent protein (EGFP) expression and Cy3-labeled pEGFP-C1 (Enhanced Green Fluorescent Protein plasmid) images, respectively. Importantly, it indicated that Malt-DiC14MA exhibited high gene transfer efficiency and better uptake capability at N/P ratios of 8:1. Additionally, the result of cell viability showed glycolipids exhibited low biotoxicity and good biocompatibility by thiazolyl blue tetrazolium bromide (MTT) assay.
منابع مشابه
The Effect of Cationic Liposomes Encapsulating pcDNA3.1+PA Plasmids on Humoral Immune Response in Mice
Background: DNA vaccines are third generation vaccines which have made promises to combat infectious diseases. Cationic liposomes are used as effective delivery systems for DNA vaccines to generate stronger immunity. Objective: Encapsulation of pcDNA3.1+PA plasmid, encoding protective antigen (PA) of Bacillus anthracis (B. anthracis) into cationic liposomes, and evaluation of its effect on spec...
متن کاملInvestigating lipopolymers based on polyethylenimine and nanoliposome for gene delivery to prostate cancer (PC3) cell line
Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clini...
متن کاملSynergistic effect of cationic lipids with different polarheads, central core structures and hydrophobic tails on gene transfection efficiency.
Lipid-mediated delivery of DNA into cells holds great promise both for gene therapy and basic research applications. The primary approach to improving transfection efficiency is the design and synthesis of novel cationic lipids. Alternatively, using the synergistic effect of different cationic mixtures can provide another approach to increasing transfection efficiency. This paper describes the ...
متن کاملArginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity
BACKGROUND Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA...
متن کاملEfficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery.
Lipid-mediated delivery of DNA into cells holds great promise both for gene therapy and basic research applications. This paper describes the efficient and facile synthesis and the characterization of a new multivalent cationic lipid with a double-branched headgroup structure for gene delivery applications. The synthetic scheme can be extended to give cationic lipids of different charge, spacer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2017